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In the present short communication, the diagrammatic many-body perturbation theory for the 
rederivation of PCILO method (perturbation configuration interaction using localized orbitals, see 
Theoret. Claim. Acta (Berl.) 13, 1 (1969) and 15, 100 (1969)) is consequently used. Using the Goldstone- 
Hugenholtz linked-cluster theorem, the diagrammatic expression for the exact ground-state energy is 
obtained. An application of the present approach to the low-lying excited and/or ionized states is also 
discussed. 
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1. Introduction 

The PCILO method [1-3] (perturbation configuration interaction using 
localized orbitals) can serve as a very effective approach for the calculation of the 
ground-state energy (and others ground-state characteristics) of the closed-shell 
molecular systems. Recently, this method has been generalized for the treating 
of the low-lying excited [4-5] as well as the ionized states [6]. Thus, the PCILO 
method covers a wide variety of theoretical problems of the ground state and 
excited states of molecular systems (namely small saturated organic molecules). 
The original derivation of the PCILO method is performed using the clumsy 
technique of the Slater determinants, where the Goldstone graphology [7, 8] 
has been merely used in an illustrative way. It seems that a correct establishment 
of any diagrammatic perturbation theory should be completely based on the 
second-quantization formalism, i.e. a Hamiltonian of a given molecular system 
is expressed in terms of the creation and annihilation operators. This assumption 
is not properly satisfied in the original construction of the PCILO method [1-5], 
where the Epstein-Nesbet [12] form of the perturbation theory is used. On the first 
sight, ony may assume, that this approach of the construction of the diagram- 
matic perturbation theory is very effective and fruitful. But nevertheless, if it is 
used as a starting point for the construction of the diagrammatic perturbation 
theory, then it contains many unresolved theoretical pitfalls. For example, 
the linked-cluster theorem for the energy is not proved. The purpose of the present 
short communication is to use consequently the well-established "powerful 
machinery" of the diagrammatic perturbation theory for the correct rederivation 
of the PCILO method. 
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2. Theory 

Let us study a closed-shell molecular system for which a set of the strictly 
localized molecular spinorbitals (SLMSO) is known 

(1) 

where the index i runs over all bonds (and lone pairs), and ~ describes whether the 
given SLMSO is bonding (c~ =0) or antibonding (~ = 1). In accordance with 
Ref. [3] we accept their form of ZDO approximation 

QPi~ I g~ = 6ij6~#, (2a) 

( cpi= r.,oja[ 9 [Cpk~,, qat a' ) = fiik 6 ji ( (0~ r.,o ja [ 9lr.p~, r Ja' ) , (2b)  

i.e. the set (1) is an orthonormal one, and condition (2b) reduces the total number 
of explicitly treated two-particle matrix elements. In the second quantization 
formalism [-8, 9], a Hamiltonian of the given molecular system than can be 
written as 

(3) 
+ (1/2) ~ ~ (q)i~, q~jpl 9[r-Pi~, " qosp') X, + Xj+~ Xja, Xi~,, 

" jg, 

Xi + and Xja being the creation and annihilation operators, respectively, defined 
on the orthonormal [cf. Eq. (2a)] set (1). 

For the next considerations it is appropriate to introduce an unperturbed 
ground-state vector 

I~o) = ] ~  X~ IO), (4) 
i 

where 10) is the normalized state vector of vacuum, and product index i runs 
over all the "bonding" (occupied) SLMSO's. 

Then, the one-particle states contained in 1~o) are called hole states, and 
antibonding SLMSO's as particle states. Using ZDO approximation (2a-b), 
the zero-order energy can be expressed in the form 

(~ol H I ' o )  = ~ (q~ol hl~o~o) +(1/2) ~, (q~o ~Ojol gl<P,o q~jo) 
(5) 

-(1/2) ~ (~Olo r gl~owqho) �9 
i 

Application of the Wick theorem [-8-10-1 on the Hamiltonian (3) gives after simple 
algebraic manipulations 

H -- (~ol H I ' o )  +Jr + g4r �9 (6) 

The operator ~o is determined by 

~fo = ~ ~ <q~l f I~o~,,> N[X~+X~,,], (7) 
i ~ '  
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N[.. .]  being the normal product of the creation and annihilation operators 
[9, 10] defined with respect to I~0>, and the matrix elements <~oi~ I f loi~.)  are 
determined as follows 

J 

- -  ( r  gJ~io ~i~,') . 
(8) 

We assume that the elements of (1) satisfy the condition 

(([gia] f [r = ei~,6~ ' " (9) 

Then, the operator Y/(o (called unperturbed Hamiltonian) has a diagonal form 

~o  = ~ E e,~N[X+ X,a] �9 (10) 
i a 

Using the one-particle energies ei~, the energy (5) can be rewritten (cf. similar 
expression in Hartree-Fock theory) in the form 

<r H Ir - ~ (eio + <~iol hlqho)). (11) 
i 

The operator d/f 1 (called perturbation) from the r.h.s, of Eq. (6) is defined by 

Jr = Z 2 (1 - 6 u )  (qh~l hl~oj~,> N[X,+~X3,,] 
ij ~" (12) 

+ (1/2) ~ Z <~oi~q~j~l 9lq~,,,q)j~,> N[Xs 

The perturbation contains one-particle (first summation) as well as two-particle 
(second summation) terms, the diagrammatic interpretation of which is presented 
in Fig. 1. From the property of the normal product, <~oIN [...] ]~o> = 0, follows 
that matrix element of ~FI between two L~o> is zero, i.e. <~ol ~(~ I~o> = 0. 

In the following, let us turn our attention to the application of the diagram- 
matic perturbation theory [8] on the problem of calculation of the exact ground- 
state energy of molecular systems described by the Hamiltonian (6). Using the 
Goldstone-Hugenholtz linked-cluster theorem [7, 11], the diagrammatic expres- 

=0-~0)< ~o ~ I h l ~p > 

jp jp' 

b 

Fig. 1. The diagrammatic interpretation of the individual terms of the perturbation Jt~l defined by (12) 
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j l  

4- 4- 
i H + i~ I [ , 

io iO 

Fig. 2. The diagrammatic expression up to the second order for the exact ground-state energy E 0 

sion for the exact ground-state energy is obtained (principal result of this com- 
munication) 

Eo = (@olH[@o) + <q)o[ a/f~ W, , (13) 
n=l  

where the subscript C means that only connected diagrams contribute. The 
diagrammatic expression up to the second order for the exact energy calculated 
by the use of Goldstone's graphology [7, 8] is presented in Fig. 2. Using the simple 
diagrammatic rules [7, 8, 10] we obtain from Fig. 2 the following expression 

Eo = (~ol  H I ' o )  + Z I(q~sol hl~oi,>l 2 
i@j  ~jO - -  ~ i l  

-t- (1/2) E I<(PiO q~jo Ig  [{Pil fPjl>] 2 (14) 

i j  giO "4- ~jO - -  g i l  - -  F'jl 

I(qho q~iol 91~oil ~0i,>l z 
- -  (1/2) ~i 2giO --  2~3il ' 

where the summation indices run over all bonds. The higher order contributions 
can be obtained by straightforward procedure by the inclusion of the diagrams 
with more than two vertices. 

3. Discussion 

To open this discussion we stress that the present final expression for the 
exact ground-state energy [13, 14] is different from the one obtained in the original 
formulation of the PCILO method ['1-3]. Namely, 1) the basis of the one-particle 
functions (1) is defined through the two-dimensional self-consistent conditions (9), 
and 2) our denominators are built from the "effective" one-particle energies ~i, 
in contrast to Ref. [3], where the diagonal matrix elements E I=  <~i1H]~I> 
appear. This second discrepance is originating from the fact that we have con- 
sequently used the diagrammatic perturbation theory fully based on the second- 
quantization formalism. Then, the lower-order original contributions to the exact 
ground-state energy may be obtained in our approach by the infinite summation 
of some pertinent diagrams. For the higher-order contributions this summation 
procedure is applicable only for carefully selected types of the diagrams due to 
the effect of the overcounting of some diagrams. Therefore, a simple one-to-one 
correspondence between the original formulation of the PCILO method and the 
present correct approach does not exist. 
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The first order reduced density matrix can be calculated in the framework 
of the present diagrammatic method using the Thouless linked-cluster theorem 
[8] for the calculation of the exact ground-state mean value of the one-particle 
observable. 

The present approach might be of value also for the calculation of the low- 
lying excited [4, 5] as well as the single ionized [6] states in the framework of 
PCILO method. These states may be calculated using the diagrammatic degenerate 
Rayleigh-Schr/3dinger perturbation theory [13, 14]. For example, the excitation 
energy A Ei~ j, corresponding to the single excitation of an electron from the 
occupied orbital [~Oio ) into virtual ]~oj~) is equal to 

AEI,~j = ~jl - ~io + (~i-.jl Gl~bi-.j), (15) 

where [~z~j)= X~X~o 1~0) is the particle-hole unperturbed state vector, and G 
is an effective interaction operator [13] with the diagrammatic interpretation. 
Furthermore, it is also possible to calculate the first-order density matrices of the 
corresponding excited states by the generalized Thouless theorem [14]. Thus, 
we have obtained all necessary informations characterizing the excited state of the 
given closed-shell molecular system. The same approach may be also applied for 
treating the ionized states. 

To conclude, we point out our belief that present systematic diagrammatic 
theory of PCILO method may serve as an useful background for better under- 
standing, and more detailed study of this method, and moreover, it also gives us 
the possibility to extend it to the study of more complex problems. 

Refe rences  

1. Diner, S., Malrieu, J. P., Claverie, P.: Theoret. Chim. Acta (Berl.) 13, 1 (1969) 
2. Malrieu, J. P., Claverie, P., Diner, S.: Theoret. Chim. Acta (Berl.) 13, 18 (1969) 
3. Diner, S., Malrieu, J. P., Jordan, F., Gilbert, M.: Theoret. Chim. Acta (Berl.) 15, 100 (1969) 
4. Langlet, J.: Theoret. Chim. Acta (Berl.) 27, 223 (1972) 
5. Langlet, J., Malrieu, J.P.: Theoret. Chim. Acta (Berl.) 30, 59 (1973) 
6. Langlet, J., Gilbert, M., Malrieu, J. P.: Theoret. Chim. Acta (Berl.) 22, 60 (1971) 
7. Goldstone, J.: Proc. Roy. Soc. (London) A239, 267 (1957) 
8. Thouless, D.J.: The quantum mechanics of many-body systems. New York: Academic Press 1961 
9. Schweber, S.S.: An introduction to relativistic quantum field theory. Evanston, Ill.: Peterson 

1961 
10. Ci~ek, J.: Correlation effects in atoms and molecules. Advan. Chem. Phys. 14, R.Lefebvre and 

C. Moser, Eds. New York: Interscience Publishers 1969 
11. Hugenholtz, N.M.: Physica 23, 481 (1957) 
12. Nesbet, R.K.: Proc. Roy. Soc. (London) A230, 312 (1955) 
13. Kvasni6ka, V., Huba6,I.: J. Chem. Phys. to be published in June, 1974 
14. Kvasni6ka, V.: Czech. J. Phys. (to be published) 

Dr. V. Kvasni6ka 
Department of Organic Chemistry 
Slovak Technical University 
880 37 Bratislava, Czechoslovakia 


